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An additive form of the Landau inequality for f # W n
�[&1, 1],
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T (m)
n (1) & f (n)&,

is proved for 0<c�(cos(?�2n))&2, 1�m�n&1, with equality for f (x)=
Tn(1+(x&1)�c), 1�c�(cos(?�2n))&2, where Tn is the Chebyshev polynomial.
From this follows a sharp multiplicative inequality,

& f (m)&�(2n&1n !)&m�n T (m)
n (1) & f &1&m�n & f (n)&m�n

for & f (n)&�_ & f &, 2n&1n ! cos2n(?�2n)�_�2n&1n !, 1�m�n&1. For these values
of _, the result confirms Karlin's conjecture on the Landau inequality for inter-
mediate derivatives on a finite interval. For the proof of the additive inequality a
Duffin and Schaeffer-type inequality for polynomials is shown. � 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

The Landau or Landau�Kolmogorov inequality,

& f (m)&��cn, m & f &1&m�n
� & f (n)&m�n

� (1.1)

for functions f # W n
�(I ), I=R, R+ or [&1, 1], where the problem is to

find the best possible constants C �
n, m , C +

n, m , and Cn, m respectively, was
introduced in 1913 by E. Landau [LAN], who found C �

2, 1=- 2 and
C+

2, 1=2.
The problem for I=R was solved in 1938 by A. N. Kolmogorov

[KOL], who also found extremal functions, so-called Euler splines.
The problem for I=R+ was studied in 1914 by J. Hadamard [HAD]

and in 1955 by A. P. Matorin [MAT], who found that C +
n, m�

(2n&1n !)&m�n T (m)
n (1)=Mn, m , with equality for n=2 and n=3. In 1970
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I. J. Schoenberg and A. Cavaretta [S6C], solved the problem for R+ and
showed that C +

n, m<Mn, m when n�4. More generally than in (1.1), we can
consider as a Landau inequality, any sharp inequality of the form

& f (m)&�F(& f &, & f (n)&)

or

& f (m)&�F_(& f &, & f (n)&), with & f (n)&�_ & f & or & f (n)&�_ & f &,

where F(x, y) is homogeneous in x and y, i.e., where xF $x+ yF $y=F(x, y).
Here and in the following we write & f &�=& f &. We will study the cases
F(x, y)=Ax+By in Theorem 1 and F(x, y)=Cx1&m�nym�n in Theorem 2.

When I=[&1, 1] the situation is somewhat different in (1.1) compared
to I=R or R+ . Then there is no common constant for all W n

�[&1, 1],
but only for each _>0, a best constant cn, m=Cn, m(_), such that (1.1)
holds for every f # W n

�[&1, 1] with & f (n)&�_& f &. See the book of
R. A. DeVore and G. G. Lorentz [D6L, pp. 38�39]. In Theorem 2 we
show that Cn, m(_)=Mn, m , 1�m�n&1, when 2n&1n ! cos2n(?�2n)�
_�2n&1n !. In obtaining this result we lean on the results of A. Yu. Shadrin
in [SH1, SH3].

The result in Theorem 2 was proved for n=2 in 1975 by C. K. Chui and
P. W. Smith [C6S] and for n=3 in 1982 by M. Sato [SAT]. In 1993 the
result was announced for m=n&1 and m=n&2 by A. Yu. Shadrin in
[SH2], where also more results and references are given. Up to then best
known, and also some best possible, constants in connection with this
problem were given in 1976 and 1990 by H. Kallioniemi in [KA1, KA2].

Theorem 1. Let f # W n
�[&1, 1]. Then, for every c, 0<c�

(cos(?�2n))&2, and for every m, 1�m�n&1,

& f (m)&�
1
cm \1&

m
n + T (m)

n (1) & f &+
cn&m

2n&1n !
m
n

T (m)
n (1) & f (n)&. (1.2)

Theorem 2. Let f # W n
�[&1, 1], where n�2, and suppose that

& f (n)&�_ & f &, 2n&1n ! cos2n(?�2n)�_�2n&1n !. (1.3)

Then for every m, 1�m�n&1, Cn, m(_)=Mn, m , i.e.,

& f (m)&�(2n&1n !)&m�n T (m)
n (1) & f &1&m�n & f (n)&m�n, (1.4)

with equality for f (x)=Tn(1+(x&1)�c), 1�c�(cos(?�2n))&2.
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Remark 1.1. The minimum of the right hand side of (1.2) ( f fixed,
c>0) occurs when cn=2n&1n ! & f &�& f (n)&, and this value of c turns (1.2)
into (1.4). Hence Theorem 2 follows at once from Theorem 1, for those
functions f for which the inequalities (1.2) and (1.3) hold.

The equality for the mentioned functions is obvious.
A second setting of the Landau problem is that of determining

,m(_, !)=sup
f

[ | f (m)(!)| : & f &=1, & f (n)&�_], &1�!�1, _�0,

and

,m(_)=sup
f

[& f (m)& : & f &=1, & f (n)&�_], _�0. (1.5)

In 1978, A. Pinkus [PIN], showed the existence of perfect splines
P_, !(x) such that &P_, !&=1, &P (n)

_, ! &=_, and such that

|P(m)
_, !(!)|=,m(_, !),

which gives

,m(_)�Cn, m(_) _m�n.

When _>0, Cn, m(_) is decreasing and ,m(_) is increasing. For & f &=1,
& f (n)&=_=:n2n&1n !, with :�cos2(?�2n), Theorem 2 gives

& f (m)&�:mT (m)
n (1)=T (m)

n (1)(_�2n&1n !)m�n, (1.6)

with equality for f (x)=Tn(1+(x&1)�c), 1�c�1�cos2(?�2n), i.e., for
cos2n(?�2n) 2n&1n!�_�2n&1n !. When & f (n)&=_=2n&1n!(; cos2(?�2n))n,
0<;�1, Theorem 1 with c=1�cos2(?�2n), gives

& f (m)&�cos2m(?�2n) T (m)
n (1) \1&

m
n

+
m
n

;n+ . (1.7)

Thus (1.6) and (1.7) yield

,m(_)�T (m)
n (1)(2n&1n !)&m�n _m�n, _>2n&1n !, (1.8)

,m(_)=T (m)
n (1)(2n&1n !)&m�n _m�n, cos2n(?�2n) 2n&1n!�_�2n&1n !

(1.9)
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and

T (m)
n&1(1)�,m(_)�cos2m(?�2n) T (m)

n (1) \1&
m
n

+
m
n

;n+ ,

0<_=2n&1n !(; cos2(?�2n))n, 0<;�1. (1.10)

In 1976 S. Karlin [KAR, p. 423] conjectured that, with n fixed, for each
_>0,

,m(_)=Z(m)(1, _),

where Z(x, _) is the unique perfect spline of degree n with r nodes,
&1<x1< } } } <xr<1,

Z(x, _)=c \xn+2 :
r

i=1

(&1) i (x&xi)
n
+++ :

n&1

i=1

aixi,

with n+r+1 (in this case Z(x, _) is denoted by Tn, r(x), Tn, 0(x)=Tn(x))
or n+r points of equioscillation, made unique by the requirements
&Z( } , _)&=1, &Z(n)( } , _)&=_, Z(1, _)=1, and Z(n)(1, _)=_. We have
Z(x, _)=Tn(1+(x&1)�c) for the values of _=2n&1n !�cn, considered in
Theorem 2, which confirms Karlin's conjecture in this case. It is true for all
_>0 when n=2 [C6S], and n=3 [SAT].

The inequality (1.4) is studied in [C6S] for _=_n, r=T (n)
n, r(1), n=4,

0�r�2, 5�n�6, 0�r�4, 1�m�n&1.
This investigation shows that if Karlin's conjecture is true, inequality

(1.4) is not sharp, although rather strong, for the mentioned values of _.
A third setting of the Landau inequality is the problem of finding exact

constants in inequalities of the form

| f (m)(!)|�A(!) & f &+B(!) & f (n)&

and

& f (m)&�A & f &+B & f (n)&, f # W n
�[&1, 1],

where A�T (m)
n&1(1), and B=B(A) is a convex function. Here Theorem 1

gives an upper bound for B=B(A), A�Am , and for some A the exact
value of B(A).

Before formulating Theorem 3 we define the following sets of
polynomials by

Bn=[ p # Pn : | p(x)|�1, |x|�1], (1.11)

Cn=[ p # Pn : | p( yk)|�1, yk=cos(k?�n), 0�k�n], (1.12)
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and

Dn&1=[ p # Pn&1 : | p( yk)|�1, yk=cos(k?�n), 0�k�n&1], (1.13)

where Pn is the set of all polynomials of degree at most n.
It was proved by V. A. Markov [MAR] that, if p # Bn , then

&p(m)&�&T (m)
n &, 1�m�n. (1.14)

This result was generalized by Duffin and Schaeffer [D6S], who proved
that (1.14) holds also if p # Cn . The following theorem is a result of a
similar kind.

Theorem 3. If p # Dn&1 , then for every x, 0�x�1, and for every m,
1�m�n&1,

| p(m)(x)|�(1&m�n) &T (m)
n &. (1.15)

We have equality in (1.15) for x=1, 1�m�n&1, when p=Q is the
polynomial of degree n&1 interpolating Tn at yk , 0�k�n&1, i.e., when
Q(x)=Tn(x)&(x&1) T $n(x)�n.

2. PREREQUISITES FOR THE PROOFS

The m th derivative of the Chebyshev polynomial

Tn(x)=2n&1xn& } } } =Tn(cos %)=cos n%, &1�x�1, 0�%�?,

satisfies the differential equation

(1&x2) T (m+2)
n &(2m+1) xT (m+1)

n +(n2&m2) T (m)
n =0. (2.1)

Since Tn( yk)=cos(nk?�n)=(&1)k, it follows that yk=cos(k?�n),
0�k�n, are the extreme points of Tn , and that

T $n(x)=2n&1n(x& y1) } } } (x& yn&1). (2.2)

From (2.1) we obtain the recursion formula

T (m+1)
n (1)=

n2&m2

2m+1
T (m)

n (1). (2.3)
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Next we list four theorems and one lemma, which will be useful in the
sequel.

In his paper [SH3], A. Yu. Shadrin proved the following theorem on
derivative error bounds for Lagrange interpolation.

Theorem A. Let pn&1(x) be the polynomial of degree at most n&1, that
interpolates f # W n

�[a, b] at the points t0 , ..., tn&1 : a�tn&1<tn&2< } } } <
t1<t0�b and set |(x)=>n&1

k=0 (x&tk).
If |j (x)=|(x)�(x&tj), 0� j�n&1, then

pn&1(x)= :
n&1

j=0

f (t j)
|$(t j)

|j (x).

Let

|(m)
0 (x)=c `

n&1&m

j=1

(x&:j), :n&1&m< } } } <:2<:1 ,

and let

| (m)
n&1(x)=c `

n&1&m

j=1

(x&;j), ;n&1&m< } } } <;2<;1 , 1�m�n&2.

If :0=t0 , ;0=b, :n&m=a, ;n&m=tn&1 , In, m=�n&m
j=0 [:j , ;j], and

Jn, m=�n&m
j=1 (;j , :j&1), then

sup
& f (n)&�1

| f (m)(x)& p (m)
n&1(x)|=

1
n !

|| (m)(x)|, x # In, m , (2.4)

and

sup
& f (n)&�1

| f (m)(x)& p (m)
n&1(x)|�

1
n !

max[ ||(m)(;j)|, ||(m)(:j&1)|],
(2.5)

x # (; j , :j&1)/Jn, m .

From Theorem A we obtain the estimate

sup
;�x�b

| f (m)(x)& p (m)
n&1(x)|�

& f (n)&
n !

sup
;�x�b

||(m)(x)| (2.6)

for any f # W n
�[a, b], when ; is a point in In, m .

In [SH1], A. Yu. Shadrin proved (1.14) for polynomials in Cn using the
following theorem.
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Theorem B. Let q # Pn have n distinct zeros in the interval [&1, 1].
Let uj , 1� j�n&1, be the zeros of q$ and set u0=1 and un=&1. If a
polynomial P # Pn satisfies the inequality

|P(uj)|�|q(uj)|, 0� j�n,

then for each m, 1�m�n, and for each x, &1�x�1,

|P(m)(x)|�max { |q(m)(x)|, } 1
m

(x2&1) q(m+1)(x)+xq(m)(x)}= .

If q(x)=Tn(x), uj= yj , and if |P( y j)|�1, 0� j�n, the last inequality
becomes

|P(m)(x)|�max { |T (m)
n (x)|, } 1

m
(x2&1) T (m+1)

n (x)+xT (m)
n (x)}= . (2.7)

Theorem C (Sonin�Po� lya). If p, p$, q, and q$ are continuous in an
interval J, p, q>0 and if ( p(x) q(x))$�0, for x # J, then | y(xi)| is increasing
on the set of local extreme points xi for y, when y is a non-trivial solution
of the differential equation

( p(x) y$)$+q(x) y=0,

which is of self-adjoint form.

The Sonin�Po� lya theorem is proved by studying the function

F(x)= y2+
p(x)
q(x)

( y$)2= y2+
1

p(x) q(x)
( p(x) y$)2, (2.8)

which, using the differential equation, gives

F $(x)=&
( p(x) q(x))$
( p(x) q(x))2 ( p(x) y$)2�0.

Thus F is increasing in J, and the theorem follows.

Theorem D. (The Sturm Comparison Theorem). If q(x) and r(x) are
continuous on [a, b], q(x)�r(x), q{r, if y(x) and z(x) are non-trivial
solutions of the differential equations

y"+q(x) y=0
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and

z"+r(x) z=0,

and if z(a)=z(b)=0, then there exists at least one point x0 , a<x0<b, such
that y(x0)=0.

For a proof of Theorem D, see [SIM].
If we write the differential equation (2.1) in the form

T (m+2)
n + p(x) T (m+1)

n +q(x) T (m)
n =0,

it can be transformed to the form

u"+Sm(x) u=0,

where T (m)
n =u., .(x)=e&� ( p(x)�2) dx>0, and Sm(x)=q(x)& 1

4( p(x))2&
1
2p$(x). We see that T (m)

n and u have the same zeros. The differential
Eq. (2.1) gives

Sm(x)=
n2&m2

1&x2 &
1
4

(2m+1)2 x2

(1&x2)2+
1
2

(2m+1)
1+x2

(1&x2)2

=
n2(1&x2)&(m&0.5)2+0.75+0.25x2

(1&x2)2 (2.9)

Lemma A. (a) If Tn is the Chebyshev polynomial of degree n, then

|T (m)
n (x)|�T (m)

n (1), |x|�1, 1�m�n, (2.10)

and

|T $n(x)|�n�- 1&x2, |x|<1. (2.11)

(b) (Markov) If p(x)=(x&a1) } } } (x&an), q(x)=(x&b1) } } } (x&bn),
p{q, where a1<a2< } } } <an , b1<b2< } } } <bn , a1�b1�a2�b2�
} } } �an�bn , then, if s1< } } } <sn&1 are the zeros of p$ and t1< } } } <tn&1

are the zeros of q$, we have

s1<t1<s2<t2< } } } <sn&1<tn&1 .

It then follows that the zeros of p(m) and q(m), 2�m�n&1, interlace in the
same way as those of p$ and q$.

For a proof of Lemma A see the book of T. J. Rivlin [RIV].
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Remark 2.1. Lemma A(b) is true also if p(x)=(x&a2)
(x&a3) } } } (x&an), and if b1�a2�b2� } } } �an�bn . This is proved in a
similar way, interpolating p(x) instead of p(x)&q(x) at the points bj ,
1� j�n.

We denote the relation between the polynomials p and q in Lemma A(b)
or in Remark 2.1 by pOq. The relation O is not transitive, but if
p1 Op2 O } } } Opk and if moreover p1 Opk , then p i Opj for 1�i< j�k.

The main tools in our investigation will be Tn(x) and the following
polynomials

Ln(x)=(x&1) T $n(x)=2n&1n(x&1)(x& y1) } } } (x& yn&1), (2.12)

Ln, j (x)=
Ln(x)

(x& yj)
, 1� j�n&1, (2.13)

and

Q(x)=Tn(x)&
1
n

(x&1) T $n(x)=Tn(x)&
1
n

Ln(x). (2.14)

With |(x)=(x&1) T $n(x)=Ln(x), we have for 1� j�n&1,

|0(x)=|(x)�(x&1)=T $n(x)=Ln, 0(x),

|j (x)=|(x)�(x& yj)=Ln, j (x),

|$(1)=T $n(1)=n2,

and

|$( yj)=( yj&1) T"n( yj)=( y2
j &1) T"n( y j)�(1+ yj)=n2(&1) j�(1+ yj).

Then

pn&1(x)= :
n&1

j=0

f ( yj) |(x)
|$( yj)(x& yj)

=
f (1)
n2 T $n(x)+ :

n&1

j=1

f ( y j)
1+ y j

n2 (&1) j Ln, j (x) (2.15)

is the Lagrange interpolation polynomial of degree �n&1, interpolating f
at the points 1, y1 , ..., yn&1 . This interpolation will be used in the proof of
Theorem 3, where f # Dn&1 and pn&1= f, and in the proof of Theorem 1.

Denote the largest zeros of T (m)
n (x), L (m)

n (x), L (m)
n, j(x), and Q(m)(x) by |m ,

*m , +j, m , and qm , respectively, and denote the smallest positive zero of
T (m)

n (x) by |+
m .
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Below we obtain in Lemmas 2�4 estimates for T (m)
n (x), L (m)

n (x), and
Q(m)(x), respectively. Lemma 1 gives some control of the zeros of the
polynomials mentioned.

Lemma 1. (a) Since

L$n OTn OLn , (2.16)

T $n OLn, 1 OLn, 2 O } } } OLn, n&1 OLn and T $n OLn , (2.17)

T $n OL$n OLn, n&1 and T $n OLn, n&1 , (2.18)

T $n OQOTn , (2.19)

we have for 1�m�n&2,

|m+1<*m+1<|m<*m , (2.20)

|m+1<+1, m<+2, m< } } } <+n&1, m<*m , (2.21)

|m+1<*m+1<+n&1, m , (2.22)

|m+1<qm<|m . (2.23)

(b) If n&m�2 is even, then

0<|+
m �1�- 2n&2. (2.24)

Proof. (a) Combining (2.12) and (2.1) for m=0, we obtain

L$n(x)=T $n(x)+(x&1) T"n(x)=(T $n(x)+n2Tn(x))�(x+1),

which gives sgn(L$n(xk))=(&1)k&1, where xk , 1�k�n, are the zeros of
Tn(x), and the relation L$n OTn follows. The other relations in (2.16)�(2.19)
are obvious. Hence the results follow from Lemma A(b).

(b) The Sturm comparison theorem applied to (2.9), where
Sm(x)>Sm+2(x), implies that T (m)

n has at least one, i.e., at least one
positive zero in [&|+

m+2 , |+
m+2], since T (m)

n is even. This yields
|+

m <|+
m+2< } } } <|+

n&2=1�- 2n&2, where the equality and hence
(2.24) follows from

T (n&2)
n (x)=c(x2&1�(2n&2)).

Lemma 2. If 1�m�n&2, then

|T (m)
n (x)|�

T (m)
n (1)

2m+1
, |x|�|m . (2.25)

429LANDAU PROBLEM ON A FINITE INTERVAL



Proof. If y=T (m)
n , 1�m�n&2, then y satisfies the differential

Eq. (2.1), or in self-adjoint form,

( y$(1&x2)m+1�2)$+(n2&m2)(1&x2)m&1�2 y=0.

The expression p(x) q(x)=(n2&m2)(1&x2)2m, in Theorem C, is decreasing
in the interval 0�x�1. Hence

F(x)=(T (m)
n (x))2+(1&x2)(T (m+1)

n (x))2�(n2&m2)

is increasing, according to the proof of Theorem C, and

(T (m)
n (x))2�F(x)�F(|m+1)=(T (m)

n (|m+1))2 (2.26)

or

|T (m)
n (x)|�|T (m)

n (|m+1)|, 0�x�|m+1 . (2.27)

For |=|m+1 , the differential Eq. (2.1), since T (m+1)
n (|)=0, gives

(1&|2) T (m+2)
n (|)+(n2&m2) T (m)

n (|)=0 (2.28)

and

(1&|2) T (m+3)
n (|)&(2m+3) |T (m+2)

n (|)=0. (2.29)

From (2.28) and (2.29) we obtain

T (m+2)
n (|)=

n2&m2

1&|2 (&T (m)
n (|)) (2.30)

and

T (m+3)
n (|)=

n2&m2

1&|2

(2m+3) |
1&|2 (&T (m)

n (|)). (2.31)

Since T m+r
n (|)�0, r�2, the Taylor formula, together with (2.30) and

(2.31) gives

T (m+1)
n (1)�(1&|) T (m+2)

n (|)+
(1&|)2

2
T (m+3)

n (|)

=(1&|)
n2&m2

1&|2 (&T (m)
n (|))

+
(1&|)2

2
n2&m2

1&|2

(2m+3) |
1&|2 (&T (m)

n (|)). (2.32)
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Using (2.3) in (2.32), we obtain

T (m+1)
n (1)=

n2&m2

2m+1
T (m)

n (1)

�(n2&m2) \ 1&|
1&|2+

(2m+3) |(1&|)2

2(1&|2)2 + (&T (m)
n (|)),

or

|T (m)
n (|)|�

1
2m+1

2(1+|)2

2+(2m+5) |
T (m)

n (1), (2.33)

which together with (2.27) gives

|T (m)
n (x)|�T (m)

n (|)�
1

2m+1
2(1+|)2

2+(2m+5) |
T (m)

n (1), |x|�|m+1 .

(2.34)

Since

2(1+|)2

2+(2m+5) |
�1

when 0�|�1 and 1�m�n&2, (2.25) holds for |x|�|=|m+1 .
In the interval [|m+1 , |m], |T (m)

n (x)| is decreasing, and thus the proof
is complete.

Remark 2.1. If n�10, then |=|2> y2=cos(2?�n)>3�4 and 2(1+|)2�
(2+7|)�8�9, which gives a somewhat better estimate of |T $n(x)| in (2.34).

Lemma 3. Let Ln(x)=(x&1) T $n(x).

(a) Then

L (m)
n (1)=mT (m)

n (1), 1�m�n. (2.35)

(b) If 1�m�n&2 then

|L (m)
n (x)|�\ m

2m+1
+1+ T (m)

n (1), 0�x�|m , (2.36)

and

|L(m)
n (x)|�L (m)

n (1), 0�x�1. (2.37)
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(c) If n&m is odd, 2�m�n&3, then

|L (m)
n (x)|�L (m)

n (1), &|+
m+1�x�1. (2.38)

(d) If In, 1 is defined as in Theorem A, with |(x)=Ln(x)�(n2n&1),
then 0 # In, 1 .

Proof. (a) Using the differential Eq. (2.1), we can write

L (m)
n (x)=(x&1) T (m+1)

n (x)+mT (m)
n (x)

=((x2&1) T (m+1)
n (x)+m(x+1) T (m)

n (x))�(x+1)

=(&(2m&1) xT (m)
n (x)+(n2&(m&1)2) T (m&1)

n (x)

+m(x+1) T (m)
n (x))�(x+1)

=((m(1&x)+x) T (m)
n (x)+(n2&(m&1)2) T (m&1)

n (x))�(x+1).

(2.39)

For x=1 in the first equality, we obtain (2.35).

(b) From (2.39), using (2.3) and (2.25) we have for |x|�|m ,
1�m�n&2,

|L (m)
n (x)|�

m(1&x)+x
x+1

|T (m)
n (x)|+

n2&(m&1)2

x+1
|T (m&1)

n (x)|

�
m(1&x)+x

x+1
T (m)

n (1)
2m+1

+
1

x+1
n2&(m&1)2

2m&1
T (m&1)

n (1)

=\ m(1&x)+x
(2m+1)(x+1)

+
1

x+1+ T (m)
n (1). (2.40)

With

gm(x)=
m(1&x)+x

(2m+1)(x+1)
+

1
x+1

(2.41)

we see that g$m(x)<0, &1<x<1, and thus

gm(x)�gm(0)=
m

2m+1
+1, 0�x�1,

which together with (2.40) gives (2.36). Since *m+1<|m and L (m)
n (x) is

increasing for x�*m+1 also (2.37) follows, when m�2.
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For m=1,

L$n(x)=(x&1) T"n(x)+T $n(x)=
n2Tn(x)+T $n(x)

1+x
,

and we need to prove that

|n2Tn(x)+T $n(x)|�n2+n2x, 0�x�1.

For n=0, 1, and 2, (2.37) follows easily. For n�3, we consider the
three intervals I1=[cos(?�n), 1], I2=[sin(?�2n), cos(?�2n)], and I3=
[0, sin(?�2n)], which cover [0, 1].

(1) For x # [cos(?�n), 1], T $n(x) is convex, since T n$$$(x)>0, and
thus 0�T $n(x)�n2x, since the inequality holds at the endpoints
x=cos(?�n) and x=1.

(2) For x # I2 we use inequality (2.11) and |T $n(x)|�n2x will
follow if we prove

n

- 1&x2
�n2x or

1

n2
�x2(1&x2).

The function x2(1&x2) attains its minimum on I2 at the endpoints, that is,

x2(1&x2)�sin2(?�2n) cos2(?�2n)=(1�4) sin2(?�n)

�
1
4 \

2
?

?
n+

2

=1�n2, n�3.

(3) If n is even, and x # I3 , then T $n and Tn are of opposite sign,
that is,

|n2Tn(x)+T $n(x)|�max[ |n2Tn(x)|, |T $n(x)|]�n2.

If n is odd, x # I3 , we have

|T $n(x)|�|T $n(0)|=n, |Tn(x)|�|T $n(0)| x=nx,

and we can close the case m=1 with the inequality

|n2Tn(x)+T $n(x)|�(n2&n) |Tn(x)|+|T $n(x)|+n |Tn(x)|

�(n2&n)+n+n2x=n2+n2x.
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(c) From (2.41) we see that gm(xm)=m for the decreasing sequence

xm=&(2m2&2m&1)�(2m2+2m&1),

giving x2=&3�11, x3=&11�23, and x4=&23�39.

(i) When n is even and m is odd, we have by Lemma 1(b)

|+
4 <|+

6 < } } } <|+
n&2=1�- 2(n&1)�11�23,

when n�6 and hence

xm�x3=&11�23� &|+
m+1 for 3�m�n&3, m odd.

Thus, since gm(x) is decreasing,

|L(m)
n (x)|�gm(x) T (m)

n (1)�mT (m)
n (1)=L (m)

n (1) for xm�x�0,

i.e., for &|+
m+1�x�0, n even, n�6, 3�m�n&3, m odd.

(ii) When n is odd and m is even,

|+
3 <|+

5 < } } } <|+
n&2=1�- 2(n&1)�3�11,

when n�9, and hence

xm�x2=&3�11�&|+
m+1 for 2�m�n&3, m even.

Thus

|L (m)
n (x)|�gm(x) T (m)

n (1)�mT (m)
n (1)=L (m)

n (1),

&|+
m+1�x�0, n�9, n odd, 2�m�n&3, m even.

When n=7, T7(x)=64x7&112x5+56x3&7x,

x2=&3�11< &|+
3 =&(1&(0.6)1�2)1�2�2r&0.24

and

x4=&23�39<&|+
5 =&- 3�6.

When n=5, T5(x)=16x5&20x3+5x, |+
3 =- 2�4, and

|L"5(x)|=40 |40x3&24x2&9x+3|�400=L"5(1), &- 2�4�x�0.

This completes the proof of (c), since we already have (2.37).

(d) Here :j and ;j in Theorem A are the zeros of T"n and L$n, n&1 ,
respectively. If n is odd, T"n(0)=0 and 0 # In, 1 , defined in Theorem A. If n is
even,

434 BENGT-OLOV ERIKSSON



:n�2<0<:n�2&1 , and yn�2=0. We then have L$n( yn�2)=L$n(0)=n2Tn(0)=
n2(&1)n�2, cos(?�n) L$n, n&1(0)=L$n(0) and T"n(0)=n2(&1)n�2+1. Thus
T"n(0) and L$n, n&1(0) have opposite signs, and (2.17) implies that ;n�2>0.
Hence

0 # [:n�2 , ;n�2]/In, 1 .

Lemma 4. Let

Q(x)=Tn(x)&(x&1) T $n(x)�n=Tn(x)&Ln(x)�n. (2.42)

(a) Then Q # Dn&1 , Q( yj)=Tn( yj)=(&1) j, 0� j�n&1, and

Q(m)(1)=(1&m�n) T (m)
n (1). (2.43)

(b) If 1�m�n&1, then

|Q(m)(x)|�Q(m)(1), 0�x�1. (2.44)

(c) If n�10, then

|Q$(x)|�Q$(1)�3, 0�x�|1 . (2.45)

Proof. (a) It is obvious that

Q(x)=Tn(x)&
1
n

(x&1) T $n(x)

interpolates Tn at the points yk , 0�k�n&1, and that the coefficient of xn

is equal to zero.
Inserting x=1 in

Q(m)(x)=\1&
m
n + T (m)

n (x)+
1&x

n
T (m+1)

n (x), (2.46)

we obtain (2.43).

(b) For 0�x�|m and 1�m�n&2, using (2.25), (2.1), and (2.3)
we obtain from (2.46)
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|Q(m)(x)|�\1&
m
n + |T (m)

n (x)|

+ } (2m&1) xT (m)
n (x)&(n2&(m&1)2) T (m&1)

n (x)
n(1+x) }

�Q(m)(1)
1

2m+1
+

1
2

2m&1
n

T (m)
n (1)

2m+1

+
(n2&(m&1)2)

n
T (m&1)

n (1)
2m&1

=\ 1
2m+1

+
1
2

1
n&m

2m&1
2m+1

+
1

n&m+ Q(m)(1).

With

G(n, m)=
1

2m+1
+

1
2

1
n&m

2m&1
2m+1

+
1

n&m
,

we have

G(n, 1)=
1
3

+
1
2

1
3

1
n&1

+
1

n&1
=

1
3

+
7
6

1
n&1

�1,

when n�3.
When m�2,

G(n, m)�
1
5

+
1
2

1
n&m

+
1

n&m
=

1
5

+
3
2

1
n&m

�1

for n&m�2. In both cases (2.44) follows for 0�x�|m , n&m�2.
Since qm<|m<1, according to (2.19), and since Q(m)(x) is increasing

from zero in the interval qm�x�1, (2.44) holds for 0�x�1, m�n&2.
When m=n&1, Q(m)(x) is constant and also then (2.44) holds.

(c) From (2.46) and (2.1) we have

Q$(x)=\1&
1
n+ T $n(x)+

1
n

(1&x) T"n(x)

=
n&1

n \\1+
1

n&1
x

1+x+ T $n(x)&
n2

n&1
1

1+x
Tn(x)+ .
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Using inequality (2.11) we obtain

|Q$(x)|�(n&1) n \\1+
1

n&1

x

1+x+
1

n - 1&x2
+

1

n&1

1

1+x+ .

When n�10, we see that

|Q$(x)|�Q$(1) \\1+
1

9

x

1+x+
1

10

1

- 1&x2
+

1

9

1

1+x+
�

1
3

Q$(1) if 0�x�0.9.

When x=|1 and n�10,

|Q$(|1)|=
1&|1

n
|T"n(|1)|=

1
n(1+|1)

n2�
1
3

Q$(1).

In the remaining case, 0.9�x�|1 , we only need to study Q$(x) for
those points x, where Q"(x)=0. With m=2, (2.46) and (2.1) yield

Q"(x)=\1&
2
n+ T"n(x)+

1
n

(1&x) Tn$$$(x)

=\1&
2
n

+
3x

n(1+x)+ T"n(x)&
n2&1

n(1+x)
T $n(x)=0,

if

T"n(x)=
n2&1

n(1+x)&2(1+x)+3x
T $n(x).

This gives, using the estimate mentioned in Remark 2.1,

|Q$(x)|�
n&1

n
|T $n(x)| \1+(1&x)

n+1
n(1+x)+x&2+

�n(n&1)
1
3

8
9 \1+

2
3

(1&x)+�n(n&1)�3,

if 0.9�x�|1 , where we also used the inequality (n+1)�
(n(1+x)+x&2)�2�3, which holds for n�10 and x�0.9.

This completes the proof of Lemma 4.
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3. PROOFS OF THE THEOREMS

In this section we prove Theorems 1 and 3 for 2�m�n&1, leaving the
case m=1 to Section 4.

In Theorem 3, we will apply the Lagrange interpolation formula to the
polynomials in Dn&1 with y j , 0� j�n&1, as interpolation points. With

|(x)=(x&1) T $n(x)=Ln(x), (3.1)

we see from (2.15), that for p # Dn&1 , the Lagrange interpolation formula
gives

p(x)= :
n&1

j=0

p( yj)
|$( yj)

|(x)
x& yj

=
p(1)
n2 T $n(x)+ :

n&1

j=1

p( yj)
1+ y j

n2 (&1) j Ln, j (x).

(3.2)

The derivative of (3.2) of order m is

p(m)(x)=
p(1)
n2 T (m+1)

n (x)+ :
n&1

j=1

p( yj)
1+ y j

n2 (&1) j L (m)
n, j(x). (3.3)

From (3.3), for p # Dn&1 , we obtain the inequality, sharp for every x,

| p(m)(x)|�
|T (m+1)

n (x)|
n2 + :

n&1

j=1

1+ yj

n2 |L (m)
n, j(x)|=Am(x), (3.4)

where Am(x) is independent of p.
We start by proving that the inequality | p(m)(x)|�|Q(m)(x)| holds in

some subintervals of [&1, 1], 1�m�n&1.
Let |m+1, 1>|m+1, 2> } } } >|m+1, n&m&1 , be the zeros of T (m+1)

n (x)
and let +� j, 1>+� j, 2> } } } >+� j, n&m&1 be the zeros of L (m)

n, j(x), 1� j�n&1.
Then we have from (2.17)

+� n&1, 1 >+� n&2, 1> } } } >+� 1, 1>|m+1, 1

>+� n&1, 2>+� n&2, 2> } } } >+� 1, 2>|m+1, 2

b

>+� n&1, n&m&1>+� n&2, n&m&1> } } } >+� 1, n&m&1>|m+1, n&m&1 .

In the intervals

I1=[+� n&1, 1 , 1], I2=[+� n&1, 2 , |m+1, 1],

I3=[+� n&1, 3 , |m+1, 2], ..., In&m=[&1, |m+1, n&m&1],
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all the functions T (m+1)
n , L (m)

n, 1 , ..., L (m)
n, n&1 , have the same sign, and thus

(3.3) with p=Q gives

|Q(m)(x)|= } 1
n2 T (m+1)

n (x)+ :
n&1

j=1

1+ yj

n2 L (m)
n, j(x)}

=
1
n2 |T (m+1)

n (x)|+ :
n&1

j=1

1+ yj

n2 |L (m)
n, j(x)|.

If x belongs to one of these intervals, and if p # Dn&1 , we have

| p(m)(x)|= } p(1)
T (m+1)

n (x)
n2 + :

n&1

j=1

p( yj)
1+ yj

n2 (&1) j L (m)
n, j(x)}

�
|T (m+1)

n (x)|
n2 + :

n&1

j=1

1+ yj

n2 |L (m)
n, j(x)|=|Q(m)(x)|, (3.5)

where the inequality is strict when x is an interior point of some Ik , unless
p(x)=\Q(x). If moreover 0�x�1, we have by (2.44), for 1�m�n&1,

| p(m)(x)|�|Q(m)(x)|�Q(m)(1), (3.6)

i.e., inequality (1.15) of Theorem 3 holds for x�0 in the above mentioned
intervals.

Proof of Theorem 3. We divide the proof into three cases. In Case 1 we
consider m=n&1 and m=n&2; in Cases 2 and 3, with 2�m�n&3, we
study the intervals |m�x�1 and 0�x�|m , respectively.

Case 1. n&2�m�n&1 and 0�x�1.
When m=n&1, p(n&1)(x) is a constant, and thus the inequality

| p(n&1)(x)|=| p(n&1)(1)|�Q(n&1)(1) follows from (3.5).
When m=n&2, p(n&2)(x) is linear,

1 # I1=[(1+cos(?�n))�(n&1), 1], 0 # I2=[&1, 0],

and (3.6) gives

| p(n&2)(1)|�Q(n&2)(1) and | p(n&2)(0)|�|Q(n&2)(0)|�Q(n&2)(1),

i.e., (1.15) holds.

Case 2.1 2�m�n&3, n�6, and |m�x�1.
When x�+n&1, m , we already know that | p(m)(x)|�Q(m)(1), also for

m=1, according to (3.6), so we restrict ourselves to the interval |m�
x�+n&1, m , and suppose that 2�m�n&3. We have qm<|m<*m and
+n&1, m<*m from Lemma 1 and moreover we have Q(m)(x)>0 for x>qm .
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Let A+(x) be the sum of the positive terms and A&(x) be the absolute
value of the sum of the negative terms in the right-hand side of

Q(m)(x)=
1
n2 T (m+1)

n (x)+ :
n&1

j=1

1+ yj

n2 L (m)
n, j(x).

Since Q(m)(x)=A+(x)&A&(x)�0, we see that A+(x)�A&(x) for x�qm

and, since A+(x) is increasing, the inequality

| p(m)(x)|�A+(x)+A&(x)�2A+(x)�2A+(*m)=2Q(m)(*m)

=2T (m)
n (*m)�(1&m�n) T (m)

n (1), (3.7)

will follow as soon as we show that

T (m)
n (*m)�(1&m�n) T (m)

n (1)�2. (3.8)

By the definition of *m ,

L (m)
n (*m)=(*m&1) T (m+1)

n (*m)+mT (m)
n (*m)=0,

i.e.,

(1&*m) T (m+1)
n (*m)=mT (m)

n (*m).

Since *m>|m , we have T (m+r)
n (*m)�0, r�0, and according to the Taylor

expansion

T (m)
n (1)�T (m)

n (*m)+(1&*m) T (m+1)
n (*m)

=(m+1) T (m)
n (*m). (3.9)

From (3.9) we see that

T (m)
n (*m)�T (m)

n (1)�(m+1)�(1&m�n) T (m)
n (1)�2,

giving (3.8), if

1
m+1

�
1
2

n&m
n

or
2

m+1
+

m
n

�1.

In the last inequality, the left-hand side is convex as a function of m. The
inequality holds for m=2 and m=n&3 when n�6, and thus for
2�m�n&3. This proves (1.15) for |m�x�1, 2�m�n&3, n�6.
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Case 2.2. (n, m)=(5, 2) and |2�x�*2 .
Here L"5(x)=1600x3&960x2&360x+120. Since |2<*2�0.77, we get

(3.8) from

T"5(*2)�T"5(0.77)<54<60=0.5(1&2�5) T"5(1).

Case 3.1. 2�m�n&3, 0�x�|m , and U(x)�V(x).
If p # Dn&1 , and if we choose the constant A, such that P # Cn , where

P(x)= p(x)+ALn(x),

the Duffin and Schaeffer theorem [D6S] for (1.14), with m=n yields

|A| n2n&1n !�2n&1n ! or |A|�1�n.

Theorem B implies that |P(m)(x)|�max[U(x), V(x)], where

U(x)=|T (m)
n (x)|�T (m)

n (1)�(2m+1), 0�x�|m ,

according to Lemma 2, and, if we also use (2.1) and (2.3),

V(x)=
1
m

|(1&x2) T (m+1)
n (x)&mxT (m)

n (x)|

=
1
m

|(m&1) xT (m)
n (x)&(n2&(m&1)2) T (m&1)

n (x)|

�
m&1

m
x

T (m)
n (1)

2m+1
+

n2&(m&1)2

m
T (m&1)

n (1)
2m&1

=\m&1
m

x
2m+1

+
1
m+ T (m)

n (1), 0�x�|m . (3.10)

When U(x)�V(x), we obtain, also using (2.36),

| p(m)(x)|�U(x)+|L (m)
n (x)|�n�\ 1

2m+1
+

1
n \1+

m
2m+1++ T (m)

n (1)

�
n&m

n
T (m)

n (1)=Q(m)(1),

if

1
2m+1

+
1
n \1+

m
2m+1+�

n&m
n
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or, after simplification,

2+1�(2m)�n&m,

which holds for all m, 2�m�n&3, n�5.

Case 3.2. 2�m�n&4, 0�x�|m , and V(x)�U(x).
When V(x)�U(x), we instead obtain from (3.10) and (2.36),

| p(m)(x)|�V(x)+|L (m)
n (x)|�n

�\m&1
m

1
2m+1

+
1
m

+
1
n \1+

m
2m+1++ T (m)

n (1)

�
n&m

n
T (m)

n (1), (3.11)

where the last inequality holds if

m+3+7�(2m&2)�n. (3.12)

We see that (3.12) holds for m=2 if n�9, for m=3 if n�8, for m=4 if
n�9 and for m�5 if m�n&4.

Case 3.3. m=n&3, 0�x�|m , and V(x)�U(x).
When m=n&3,

T (n&3)
n (x)=2n&1n!(x3&1.5x�(n&1))�6,

T (n&2)
n (x)=2n&1n!(3x2&1.5�(n&1))�6

and

V(x)=
2n&1n !

6 } 1.5
(n&1)(n&3)

&\ 3
n&3

+
1.5

(n&1)(n&3)+ x2

+\ 3
n&3

+1+ x4 } .
In the interval 0�x�|n&3=- 1.5�(n&1) we have

V(x)�V(0)=
2n&1n !

6
1.5

(n&1)(n&3)
=

1.5
(n&2.5)(n&3)

T (n&3)
n (1).

442 BENGT-OLOV ERIKSSON



Using this inequality and (2.36) we see that

| p(n&3)(x)|�V(x)+
1
n

|L (n&3)
n (x)|

�\ 1.5
(n&2.5)(n&3)

+
1.5
n + T (n&3

n (1)�
3
n

T (n&3)
n (1),

when 0�x�|n&3 , n�5.

Case 3.4. The remaining cases with 0�x�|m and V(x)�U(x) are
(n, m)=(6, 2), (7, 2), (8, 2), (7, 3), and (8.4).

If |m, n=|m is the largest zero of T (m)
n (x), it is easy to see that

|2, 6<0.8, |2, 7<0.8, |2, 8<0.9, |3, 7<0.7, and |4, 8<0.7. According to
(3.10) and (3.11) it is enough to prove that

V(x)+
1
n

|L (m)
n (x)|�

n&m
n

T (m)
n (1), 0�x�|m, n .

We write this inequality in each case for a little larger interval, containing
|m, n ,

4 } 3 |&240x5+256x3&51x|

+4 |240x4&160x3&96x2+48x+3|�4 } 70, 0�x�0.8,

8 } 7 |&168x6+220x4&69x2+3|+8 } 2 |168x5&120x4

&100x3+60x2+9x&3|�8 } 70, 0�x�0.8,

16 } 4 |&448x7+696x5&300x3+31x|+16 |448x6&336x5

&360x4+240x3+60x2&30x&1|�16 } 63, 0�x�0.9,

16 } 7 |&280x5+260x3&43x|

+16 } 3 |280x4&160x3&100x2+40x+3|�16 } 252, 0�x�0.7,

and

1920 } 2 |&112x5+92x3&13x|

+1920 |112x4&56x3&36x2+12x+1|�1920 } 33, 0�x�0.7.

Elementary calculations show that these inequalities hold and thus that
(3.11) holds in all five remaining cases. This completes the proof of
Theorem 3, when 2�m�n&1.

Proof of Theorem 1. First we suppose that . # W n
�[&cos(?�n), 1],

n�2. We denote the sup norm of a function . defined on the interval
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[&cos(?�n), 1] by &.&n . Let pn&1 be the polynomial of degree �n&1
that interpolates . at the points yk=cos(k?�n), 0�k�n&1. We write

.( y)= pn&1( y)+Rn( y) and .(m)( y)= p (m)
n&1( y)+R (m)

n ( y).

Here we use Theorem 3 and Theorem A in order to estimate p(m)
n&1( y) and

R(m)
n ( y), respectively.
According to Theorem 3, we have for 2�m�n&1,

| p (m)
n&1( y)|�&.&n (1&m�n) T (m)

n (1), 0� y�1. (3.13)

With interpolation points yk , 0�k�n&1, we have in Theorem A,

|(x)=
1

2n&1n
Ln(x), |0(x)=

1
2n&1n

T $n(x), and

|n&1(x)=
1

2n&1n
Ln, n&1(x).

Hence :j and ;j , 1� j�n&1&m, are the zeros of T (m+1)
n (x) and

L(m)
n, n&1(x), respectively. Thus Theorem A, (2.6), (2.37), and (2.38) imply

that

sup
w�x�1

|. (m)(x)& p (m)
n&1(x)|�

&.(n)&n

n !
sup

w�x�1

|L (m)
n (x)|

2n&1n

=
&.(n)&n

n !
|L (m)

n (1)|
2n&1n

,

if w=0 # In, m , when n&m is even, and if w=&|+
m+1 # In, m , when n&m

is odd, 2�m�n&3. Hence, Theorem A in both cases gives

|R(m)
n ( y)|�

&.(n)&n

n !
mT (m)

n (1)
2n&1n

, 0� y�1. (3.14)

Thus, using both (3.13) and (3.14) we obtain

|.(m)( y)|�&.&n (1&m�n) T (m)
n (1)+

&.(n)&n

n !
m
n

T (m)
n (1)

2n&1 , 0� y�1

(3.15)

for 2�m�n&2.
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In order to prove (3.14) when m=n&1, we use divided differences and
obtain

dn&1[.; u0 , ..., un&1]&dn&1[.; y0 , ..., yn&1]

= :
n&1

j=0

(uj& yj) dn[.; y0 , ..., yj , uj , ..., un&1].

Letting u0 , ..., un&1 tend to y, 0� y�1, we see that

|.(n&1)( y)& p (n&1)
n&1 ( y)|

(n&1)!
� :

n&1

j=0

| y& y j |
&.(n)&n

n !
.

Here g( y)=�n&1
j=0 | y& yj | is convex, with g(1)=n&1, g(0)�n&1. Hence

g( y)�n&1, 0� y�1, and

|R(n&1)
n ( y)|=|.(n&1)( y)& p (n&1)

n&1 ( y)|�
n&1

n
&.(n)&n , 0� y�1,

which is (3.14) when m=n&1, and thus (3.15) holds also for m=n&1.
Finally, suppose that f # W n

�[&1, 1]. Then we define an auxiliary
function ., in the following way.

If 0<c�1, we set

.( y)= f (x&cx+cy), where 0�x�1,

and if 1<c�2�(1+cos(?�n))=(cos(?�2n))&2, we define

.( y)= f (1&c+cy),

where y # [&cos(?�n), 1] in both cases.
With :=x&cx and :=1&c, respectively, we have in both cases

&1�:+cy�1 for all values of c, x, and y considered. This yields
|.( yk)|�& f &, 0�k�n&1, and .(m)( y)=cmf (m)(:+cy), 1�m�n. Since

&.(m)&n�cm & f (m)&, 0�m�n,

(3.15) gives

|cmf (m)(:+cy)|

�& f & (1&m�n) T (m)
n (1)+cn & f (n)&

n !
m

2n&1n
T (m)

n (1), 0� y�1.

(3.16)
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We now write :+cy=x in both cases, for 0�x�1. These values of x
correspond to 0� y�1, and 0<1&1�c� y�1, respectively, and thus we
obtain

|cmf (m)(x)|�& f & (1&m�n) T (m)
n (1)+cn & f (n)&

n !
m

2n&1n
T (m)

n (1),

0�x�1. (3.17)

Hence Theorem 1 is proved, after considering also f (&x), 0�x�1, and
the proofs of the theorems are completed for 2�m�n&1.

4. THE CASE m=1

Also in this case we start with Theorem 3, and show that | p$(x)|�
Q$(1)=n(n&1), 0�x�1, when p # Dn&1 . The cases n=2 and 3 were set-
tled in Section 3. When 4�n�9, we rely on the result of the elementary
calculations, which can be made after inserting the derivatives of

Ln, j (x)=2n&1n(x&1) } } } (x& yj&1)(x& y j+1) } } } (x& yn&1),

1� j�n&1,

into (3.4), and which give A1(x)�A1(1), 0�x�1. Thus

| p$(x)|�A1(x)�A1(1)=Q$(1), 0�x�1, 4�n�9.

From now on we suppose that n�10, and start with the interval |1�x�1.
According to (3.6) it is enough to consider the interval |1�x�+n&1, 1 or
the somewhat larger interval |1�x�*1 . Since |1=cos(?�n)<*1=cos :,
:=:n , we have 0<:<?�n. From

0=L$n(*1)=(T $n(*1)+n2Tn(*1))�(1+*1)

=(n sin(n:)�sin :+n2 cos(n:))�(1+*1)

we obtain tan(n:)=&n sin :, and deduce that :=(2?�3&kn)�n, where kn

is increasing and 0.063�kn�0.066 for n�10. Thus

T $n(*1)=&n2Tn(*1)=&n2 cos(2?�3&kn)

=n2 cos(?�3+kn)�n2 cos(?�3+0.063)�0.45n2.

Using this result in (3.7) we obtain

| p$(x)|�2T $n(*1)�0.9n2�n(n&1), |1�x�*1 , n�10.

446 BENGT-OLOV ERIKSSON



It still remains to prove that | p$(x)|�Q$(1), 0�x�|1 when n�10. We
suppose that p{\Q, since (2.44) gives |Q$(x)|�Q$(1). In the proof we
will use the inequalities

|Q$( yk)|�n, 1�k�n�2 (4.1)

|Q$(x)|�Q$(1)�3, 0�x�|1 , n�10, (4.2)

and

| p$( yk)|�0.5n2, 1�k�n�2, n�10, (4.3)

where (4.2) was proved in Lemma 4.
Moreover, we will prove that the functions Q$(x)\p$(x) both have

exactly one local minimum (maximum) in the interval [ yk+1 , yk],
yk+1�0, when k is odd (even). Also, if n is odd, and if each of the
functions Q$(x)\p$(x) has a local extreme value in the interval
[0, yr], r=(n&1)�2, we will prove that they are both of the same type.
From (4.1) and (4.3), we obtain for 1�k�n�2,

|Q$( yk)\p$( yk)|�n+0.5n2�2n(n&1)�3=2Q$(1)�3, n�10. (4.4)

When n is even, one yk=0, and when n is odd, T"n(0)=0. In the latter case
| p$(0)|�|Q$(0)| according to the proof of (3.6), and then (4.2) yields

|Q$(0)\p$(0)|�2 |Q$(0)|�2Q$(1)�3, (4.5)

and thus |Q$(0)\p$(0)|�2Q$(1)�3 holds for all values of n.
We now prove that | p$(x)|�Q$(1) by studying the converse inequality.

If | p$(x0)|>Q$(1) for some x0 , 0<x0< y1 , and if 0� yp+1�x0� yp (or
0<x0< yr , r=(n&1)�2, when n is odd), then |Q$(x0)\p$(x0)|>2Q$(1)�3,
according to (4.2), and |Q$(x)\p$(x)|�2Q$(1)�3 at the endpoints of the
interval [ yp+1 , yp] or [0, yr] according to (4.4) or (4.5). Then one of the
functions Q$(x)\p$(x) attains a local maximum and the other attains a
local minimum in the interval mentioned. But this is impossible according
to what was said above about local extreme points of Q$(x)\p$(x). Thus
| p$(x)|�Q$(1), 0�x�1.

Last, we will below in (I)�(III) prove (4.1), the assertion about the local
extreme points of Q$(x)\p$(x) and (4.3).

(I) When 1�k�n�2, we see from (2.46) that (4.1) holds, since

|Q$( yk)|= } 1& yk

n
T"n( yk)}=|n2Tn( yk)|

n(1+ yk)
�n.
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(II) Next we prove the assertion about the local extreme points of
Q$(x)\p$(x). Denote the zeros of T (3)

n (x) and L"n, n&1(x) by |3, k and
+� n&1, k , respectively, 1�k�n&3. From (2.9) and the Sturm comparison
theorem we see that if p>m, then Sp(x)<Sm(x), and thus T (m)

n (x) always
has a zero between any two zeros of T ( p)

n (x). This gives, taking account of
all zeros of T $n and T (3)

n , 0� yr�|3, r&1<yr&1<|3, r&2< } } } <y3<
|3, 2<y2<|3, 1< y1 where

0< yr<|3, r&1 , if n=2r+1,

and

0= yr=|3, r&1 , if n=2r.

From

(x+cos(?�n)) L$n, n&1(x)+Ln, n&1(x)=(x&1) T"n(x)+T $n(x)

which gives

(x+cos(?�n)) L"n, n&1(x)+2L$n, n&1(x)=
(2&x) T"n(x)+(n2&1) T $n(x)

x+1
,

(4.6)

and observing that sgn(T"n( yk))=(&1)k+1, we obtain for 1�k�n&2,

sgn(L$n, n&1( yk))=(&1)k and sgn(L"n, n&1( yk))=(&1)k+1.

Thus L"n, n&1(x) has a zero in each interval, [ yk+1 , yk], 1�k�n&3,
and since L"n, n&1(x) has exactly n&3 zeros, we see that

yk+1<+� n&1, k< yk , 1�k�n&3.

From (2.17) we obtain

} } } <|3, 3<+� n&1, 3<|3, 2<+� n&1, 2<|3, 1<+� n&1, 1 .

Combining the above three series of inequalities we see that for yk�0,

} } } <|3, 3<+� n&1, 3< y3<|3, 2<+� n&1, 2< y2<|3, 1<+� n&1, 1< y1

which implies that

yk # [+� n&1, k , |3, k&1], k�2, yk�0.

If n=2r, 0= yr # [+� n&1, r , |3, r&1]=[+� n&1, r , 0].
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Since p(x){\Q(x), we have from the proof of (3.6), | p"(x)|<|Q"(x)|
in the interior of the intervals [+� n&1, k|3, k&1], 2�k�n&3, for x>+� n&1, 1

and for x<|3, n&3 . Hence each of the functions Q"(x)\p"(x) has at least
one, i.e., exactly one zero in each interval [|3, k , +� n&1, k], 1�k�n&3, and
thus exactly one zero in each interval [ yk+1 , yk], yk+1�0, k�1. This
means that each of the functions Q$(x)\p$(x) has a local minimum at this
zero when k is odd, and a local maximum, when k is even. When n is odd,
(n&1)�2=r, we have yr+1<0< yr , and

yr # (+� n&1, r , |3, r&1).

If +� n&1, r<0, then Q"(x)\p"(x){0 for 0�x� yr . If +� n&1, r�0, both
functions Q$(x)\p$(x) can only have a local maximum or only have a
local minimum in [|3, r , +� n&1, r], and the same is of course true for the
interval [0, yr], although one or both of Q$(x)\p$(x) can fail to have a
local extreme point there.

(III) Now it remains to prove (4.3). Using

}1+ y j

n2 L$n, j (x)}= } 1+ y j

n2 \D \ x&1
x& yj+ T $n(x)+

x&1
x& yj

T"n(x)+}
we obtain for x= yk , k{ j, yk�0,

} 1+ y j

n2 L$n, j ( yk)}= } 1+ yj

n2

yk&1
yk& yj

T"n( yk)}= } 1+ y j

n2

1
yk& y j

n2Tn( yk)
1+ yk }

=
1

| yk& yj |
+

sgn(k& j)
1+ yk

. (4.7)

Furthermore we have

|T"n( yk)|
n2 =

|n2Tn( yk)|
n2(1& y2

k)
=

1
1& y2

k

. (4.8)

From (2.12) and (2.13) we obtain for x= yk ,

} 1+ yk

n2 L$n, k( yk)}= } 1+ yk

n2

1
2

(2& yk) T"n( yk)
1+ yk }= } 1

2n2

(2& yk) n2Tn( yk)
1& y2

k }
=

2& yk

2
1

1& y2
k

=
1
2

1
1& y2

k

+
1
2

1
1+ yk

. (4.9)
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Inserting (4.7)�(4.9) in (3.4), with m=1, we obtain

| p$( yk)|�
|T"n( yk)|

n2 + :
n&1

j=1

1+ yj

n2 |L$n, j ( yk)|

=
1

1& y2
k

+
1
2

1
1& y2

k

+
1
2

1
1+ yk

+ :
n&1

j=1
j{k

\ 1
| yk& y j |

+
sgn(k&j)

1+ yk +

=
1.5

1& y2
k

+ :
n&1

j=1
j{k

1
| yk& yj |

&(n&2k&1�2)
1

1+ yk
. (4.10)

As before we denote the right hand side of (4.10) by A1( yk).
We start with the two single terms in A1( yk),

U( yk)=1.5�(1& y2
k)&(n&2k&1�2)�(1+ yk).

Using the inequality

sin x�(sin x0) x�x0 , 0<x�x0�?�2, (4.11)

we obtain with x0=?�6,

U( y1)�1.5�sin2(?�n)�1.5n2�9�0.17n2,

and with x0=?�5

U( yk)<1.5�sin2(2?�n)�0.05n2, 2�k�n�6.

We also see that

U( yk)�3�0.03n2, n�10, n�6<k�n�2.

Next we study the sum in A1( yk) in the cases 1�k�n�6, n�6<k�n�3, and
n�3<k�n�2.
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Case 1. 1�k�n�6.

(a) When j�n�3,

(k+ j) ?�2n�?�4 and |k& j | ?�2n�?�6.

Hence (4.11) gives

| yk& yj |=|cos(k?�n)&cos( j?�n)|

=2 |sin((k& j) ?�2n) sin((k+ j) ?�2n)|

�2
6
?

1
2

4
?

- 2
2

|k2& j2| ?2�(4n2)

=3 - 2 |k2& j2|�n2, (4.12)

and

S$k = :
n�3

j=1
j{k

1

| yk& yj |
�

n2

3 - 2 \ :
k&1

j=1

1

k2& j2
+ :

n&1

j=k+1

1

j2&k2+
�

n2

3 - 2

1

2k \ :
k&1

j=1
\ 1

k& j
+

1

k+ j++ :
n&1

j=k+1
\ 1

j&k
&

1

j+k++
�

n2

3 - 2

1

2k
((1+1�2+ } } } +1�2k)+(1+1�2+ } } } +1�2k)). (4.13)

From the first two lines in (4.13) we see that

S$1�
n2

6 - 2
(1+1�2)�0.18n2,

and from the last line that

S$k�
n2

6 - 2
(1+1�2+1�3+1�4)�0.25n2, 2�k�n�6,

since the last line of (4.13) is the arithmetic mean of a decreasing sequence
and hence decreasing.

(b) When j>n�3

1

|cos(k?�n)&cos( j?�n)|
�

1

|- 3�2&1�2|
=- 3+1�2.74,

451LANDAU PROBLEM ON A FINITE INTERVAL



which gives, if we improve the inequality a little for k=1,

S"k= :
n&1

j�n�3+1

1
| yk& yj |

�2.74
2n
3

�0.19n2 and S"1�0.15n2.

Thus

| p$( y1)|�A1( y1)=U( y1)+S$1+S"1�0.17n2+0.18n2+0.15n2=0.5n2

and

| p$( yk)|�A1( yk)=U( yk)+S$k+S"k

�(0.05+0.25+0.19) n2<0.5n2, 2�k�n�6.

Hence (4.3) holds in Case 1.

Case 2. n�6<k�n�3.

(a) When 1� j�n�2, we have (k+ j) ?�2n�?�2 and
|k& j | ?�2n�?�6. Hence

| yk& yj |�2
2
?

6
?

1
2

|k2& j2| ?2

4n2 =3 |k2& j2|�n2,

which compared to S$k in Case 1 shows that the constant 3 - 2 in (4.12)
should be replaced by 3. This yields

S$k= :
n�2

j=1
j{k

1
| yk& y j |

�- 2 0.25n2�0.36n2.

(b) When j�n�2, we have 1�| yk& yj |�2, which gives

S"k= :
n&1

j�n�2

1
| yk& y j |

�
n
2

2=n�0.1n2.

This shows that

| p$( yk)|�A1( yk)=U( yk)+S$k+S"k�0.03n2+0.36n2+0.1n2<0.5n2,

and (4.3) holds also in Case 2.
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Case 3. n�3<k�n�2.

(a) When 1� j�5n�6, then 2?�3�(k+ j)?�2n�?�6, sin((k+ j)?�2n)
�1�2, and |k& j | ?�2n�?�4.

Thus

| yk& yj |�2
4
?

- 2
2

|k& j |
n

?
2

1
2

=- 2
|k& j |

n
,

and

S$k = :
5n�6

j=1
j{k

1
| yk& yj |

�0.71
n

|k& j |

�0.71n((1+1�2+ } } } +1�k)+(1+1�2+ } } } +1�(n&k)))

�0.71n(2+2 log(n�2))�0.38n2,

where we used the inequality

(1�2+ } } } +1�k)+(1�2+ } } } +1�(n&k))�log k+log(n&k)

=log(k(n&k))

�2 log(n�2), 2�k�n&2.

(b) When j�5n�6, 1�| yk& yj |�1.2 and

S"k= :
n&1

j�5n�6+1

1
| yk& yj |

�
n
6

1.2=0.2n�0.02n2.

Hence

| p$( yk)|�A1( yk)�U( yk)+S$k+S"k�0.03n2+0.38n2+0.02n2�0.43n2,

and (4.3) holds also in Case 3. This completes the proof of Theorem 3.

Finally we prove Theorem 1 in the case m=1. We already know that
(3.13) holds when m=1, and since 0 # In, 1 , according to Lemma 3(d),
(3.14) is obtained from

sup
0�x�1

|.$(x)& p$n&1(x)|�
&.(n)&n

n!
sup

0�x�1

|L$n(x)|
2n&1n

=
&.(n)&n

n !
T $n(1)
2n&1n

,

(4.14)

where the last equality follows from (2.37) and (2.35). Now Theorem 1 can
be proved from (3.14) and (3.15) in the same way as before, also with
m=1.
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